Fourth-order difference equation for co-recursive associated Meixner and Charlier polynomials
نویسندگان
چکیده
منابع مشابه
Fourth-order finite difference method for solving Burgers' equation
In this paper, we present fourth-order finite difference method for solving nonlinear one-dimensional Burgers equation. This method is unconditionally stable. The convergence analysis of the present method is studied and an upper bound for the error is derived. Numerical comparisons are made with most of the existing numerical methods for solving this equation. 2005 Elsevier Inc. All rights res...
متن کاملThe Fourth-order Difference Equation Satisfied by the Associated Orthogonal Polynomials of the Delta-Laguerre-Hahn Class
Starting from the D!-Riccati Diierence equation satissed by the Stieltjes function of a linear functional, we work out an algorithm which enables us to write the general fourth-order diierence equation satissed by the associated of any integer order of orthogonal polynomials of the-Laguerre-Hahn class. Moreover, in classical situations (Meixner, Charlier, Krawtchouk and Hahn), we give these dii...
متن کاملDynamical Properties in a Fourth-Order Nonlinear Difference Equation
The rule of trajectory structure for fourth-order nonlinear difference equation xn 1 x a n−2 xn−3 / x a n−2xn−3 1 , n 0, 1, 2, . . . , where a ∈ 0, 1 and the initial values x−3, x−2, x−1, x0 ∈ 0,∞ , is described clearly out in this paper. Mainly, the lengths of positive and negative semicycles of its nontrivial solutions are found to occur periodically with prime period 15. The rule is 4 , 3−, ...
متن کاملImage Description with nonseparable Two-Dimensional Charlier and Meixner Moments
This paper presents two new sets of nonseparable discrete orthogonal Charlier and Meixner moments describing the images with noise and that are noise-free. The basis functions used by the proposed nonseparable moments are bivariate Charlier or Meixner polynomials introduced by Tratnik et al. This study discusses the computational aspects of discrete orthogonal Charlier and Meixner polynomials, ...
متن کاملA Fourth Order Accurate Finite Difference Scheme for the Elastic Wave Equation in Second Order Formulation
We present a fourth order accurate finite difference method for the elastic wave equation in second order formulation, where the fourth order accuracy holds in both space and time. The key ingredient of the method is a boundary modified fourth order accurate discretization of the second derivative with variable coefficient, (μ(x)ux)x. This discretization satisfies a summation by parts identity ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2001
ISSN: 0377-0427
DOI: 10.1016/s0377-0427(00)00668-3